Bezier surface - définition. Qu'est-ce que Bezier surface
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Bezier surface - définition

SPECIES OF MATHEMATICAL SPLINE USED IN COMPUTER GRAPHICS, COMPUTER-AIDED DESIGN, AND FINITE ELEMENT MODELING, IS DEFINED BY A SET OF CONTROL POINTS
Bicubic patch; Bezier surface; Bezier surfaces; Bezier patch; Bézier patch

Bézier surface         
Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling.
Bezier surface         
<graphics> A surface defined by mathematical formulae, used in computer graphics. A surface P(u, v), where u and v vary orthogonally from 0 to 1 from one edge of the surface to the other, is defined by a set of (n+1)*(m+1) "control points" (X(i, j), Y(i, j), Z(i, j)) for i = 0 to n, j = 0 to m. P(u, v) = Sum i=0..n {Sum j=0..m [ (X(i, j), Y(i, j), Z(i, j)) * B(i, n, u) * B(j, m, v)]} B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! Bezier surfaces are an extension of the idea of {Bezier curves}, and share many of their properties. (1996-06-12)
Biharmonic Bézier surface         
Biharmonic Bezier surface
A biharmonic Bézier surface is a smooth polynomial surface which conforms to the biharmonic equation and has the same formulations as a Bézier surface. This formulation for Bézier surfaces was developed by Juan Monterde and Hassan Ugail.

Wikipédia

Bézier surface

Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central control points; rather, it is "stretched" toward them as though each were an attractive force. They are visually intuitive, and for many applications, mathematically convenient.